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Our ability to utilize the subsurface is 
limited by our lack of information,
leading to uncertain decisions.

Ø Virtual learning
Ø Signals from Noise
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Consider machine learning & the evolution of driving safety

Passive Systems

Virtual Learning

Real-time Data

Autonomous Control
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How do you design and test a monitoring system for a 
subsurface environment with limited real-world examples?

What leakage related signals occur, 
where/when do they occur,
and can you detect/monitor them?
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In the last decade, global research efforts have explored a 
plethora of approaches to monitor CO2 storage sites…

• InSAR monitoring and tilt-meters to monitor 
surface displacement

• Atmospheric monitoring using eddy-flux 
towers, LIDAR, perfluorocarbon tracers, …

• Groundwater monitoring using grab 
samples, electromagnetics, …

• Above-zone pressure monitoring with 
detailed physics-based simulation

• Data analytics and airborne magnetics
to detect legacy wells

• Advanced seismic imaging to detect 
fractures in caprock

• 4D Seismic to quantify CO2 in reservoir

• Borehole breakouts and imaging to detect 
fractures intersected by injection well

• …
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…and it has become clear that conventional monitoring 
strategies are inadequate due to effectiveness & cost.

IPCC (2005) NETL (2017)

• IPCC (2005) estimated costs for onshore monitoring 
to be 0.1–0.3 USD/tCO2 (~1–2% of storage costs)

• NETL (2017) cost model estimates that to meet EPA 
Class VI regulations using current technology may 
be >10� higher (~50% of storage costs) due to…

o Large area (e.g., 102 km2)

o Long time frame (50 years)

o Large battery of monitoring tools relying on 
conventional data analysis

Seismic and InSAR Imaging at In Salah
after 5 years of Injection

Ringrose et al. (2013) Energy Procedia 37:6226–6236
Bond et al. (2013) Geophys. Res. Let. 40:1284–1289



UNCLASSIFIED 6

If you can predict the behavior of a system accurately, then 
you can create a virtual environment for learning.

1

2

3

4

1. Develop predictive understanding of system

2. Use simulated behavior to train empirical models (ROMs; ML)

3. Use empirical models to create numerous simulated datasets (virtual environment)

4. Use machine learning methods to extract knowledge from virtual environment
(new signatures and empirical relationships, leading to autonomous monitoring system)
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Predicting the behavior of a storage site cannot be done 
using a single high-fidelity simulation.

Need: Predict the evolution of the storage system from reservoir to receptors.

1

2
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NRAP’s approach has been to describe system behavior 
based on linked components.

Potential Leakage Im
pacts

R
eservoir Behavior

Potential Leakage

Full-Physics Simulations Training Reduced-Order 
Models or ROMs Plum

e Size over Tim
e/Space

Knowledge Needed

Leakage Potential

National Risk Assessment Partnership
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NRAP developed wellbore-leakage ROMs based on full-
physics simulations of entire system (reservoir to aquifer).

• Full-physics simulations generate 
virtual-reality data for multiple 
combinations of independent variables
Øpermeabilities of wellbore, reservoir, 

thief zone, aquifer; DP in reservoir; 
depth; saturation; etc.

• Statistical methods identify key 
independent variables

Harp, D, Pawar, RJ, Carey, JW, Gable, CW (2016) Reduced order models of transient CO2 and brine leakage along 

abandoned wellbores from geologic carbon sequestration reservoirs. Int. J. Greenhouse Gas Control 45 (2016) 150–162.
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We are exploring various approaches to develop ROMs and 
are evaluating the range of ROM complexity needed.
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LLNL’s PSUADE (multiple RS types) (NRAP Team) X X
MARS (regression+cubic spline) (LANL) X X
Polynomial Chaos Expansion (NETL/CMU) X
Gaussian Regression (LBNL) X
Surrogate Reservoir Model (NETL/WVU; LBNL) X
Polynomial Non-linear Regression (LANL) X
Artificial Neural Networks (LANL) X
Support Vector Machine Learning (LANL) X
Graph theory (LANL) X

NRAP (FE-20)
Geothermal (GTO)

Oil & Gas FE-30; LDRD)

Oil & Gas (ARPA-E)

CO2/Oil & Gas (FE-20)
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We now have the ability to predict many of the leakage-
related behaviors of a complex, subsurface system.

Key gaps that have been filled by NRAP

• How do you simulate the behavior of large, 
complex, and uncertain systems?

ü Developed new stochastic approach 
based on physics-informed ROMs

• How do you accurately and rapidly predict 
the movement of fluids in a fracture?

ü Developed new methods for predicting 
fluid flow in wellbores & fractured shale

ü Collected new data on flow in fractures 
(permeability at conditions; self-sealing)

• How do you accurately and rapidly predict 
the impact of leaked fluids on an aquifer?

ü Developed new methods for predicting 
impacts of leaked fluids on aquifers

ü Collected new data on natural analogs

NRAP 
Toolset
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If you can predict the behavior of a system accurately, then 
you can create a virtual environment for learning.

1

2

3

4

1. Develop predictive understanding of system

2. Use simulated behavior to train empirical models (ROMs; ML)

3. Use empirical models to create numerous simulated datasets (virtual environment)

4. Use machine learning methods to extract knowledge from virtual environment
(new signatures and empirical relationships, leading to autonomous monitoring system)
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We are beginning to explore for potentially measurable 
signatures using machine learning and virtual data.

Schematic (below) Showing Use of 
Simulated Data to Probe for 

Observable Seismic Signatures 
based on Leakage Scenarios (right)

Buscheck et al. (2017) 
LLNL-TR-731055 

Evaluation of Ability of ML to Detect Plume using 
Synthetic Seismic Data

Zhou, Z, Lin, Y, Wu, Y, Wang, Z, Dilmore, R  (in review) J Soc Exp. Geophys.

Virtual System Used to Probe for Observable Pressure 
Signatures for Leakage into an Above-Zone Aquifer

Schematic Showing Support-Vector-Machine Model (Kernel 
Method) Used to Test for Observable Pressure Signatures

Lin, Y, Harp, DR, Chen, B, Pawar, RP (in review) J Soc Exp. Geophys.



UNCLASSIFIED 14

Internal investments have been developing non-negative 
tensor factorization as a robust unsupervised ML method.

Air Temperature

LDRD Team
Theory: Alexandrov (PI), 

Sandrasegaram, Manzini
Earth Sciences: Vesselinov (PI), 

O’Malley, Maccarthy
Computer Sciences: Djidjev (PI),  

Ahrens, Mniszewski, Patchett
Nonproliferation: Bauer, 

Fessenden, Triplett, Maskaly
UCSD: Ludmil Alexandrov

Current Developments
NMFk: Nonnegative Matrix 

Factorization (patent)
NBMFk:  Nonnegative Binary Matrix 

Factorization (Quantum Computing; 
D-Wave)
NTFk: Nonnegative Tensor 

Factorization (copyright disclosure)

Simulations of Multi-Modal Climate-related Factors
(petascale dataset)
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Tensor factorization extracts key relationships embedded in 
the full dataset.

Factorizing (compressing) in all 3 dimensions (K × N × N) → (k × m × n)
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Example Application: Three factors (signals) were 
extracted from the air temperature data.

Spatially Averaged Values of Three Signals Embedded in Air Temperature Data
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Example Application: Three factors (signals) were 
extracted from the air temperature data.

Spatial Variation of Three Signals Embedded in Air Temperature Data
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The Earth has a continuously changing state of stress due 
to tectonic forces, earth tides, injection/extraction, …

s

ss

Can we “hear” when a fault is reaching a critical state of stress?



UNCLASSIFIED 19

“Earthquake machine” is being used to probe for predictive 
signatures on state of stress using random forest methods.

Experimental Data on Slip 

Acoustic 
Emission Signal

Time to Failure Forcasted
from Acoustic Emissions

Time to failure is predicted with 
remarkable accuracy based 
only on acoustic emissions.

Rouet-LeDuc, B., C. Hulbert , N. 
Lubbers , K. Barros, and P. Johnson, 
Learning the Physics of Failure, 
Geophys. Res. Lett.
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Subsurface opportunities lie at the intersection of 
machine learning, physics, and data.

Machine learning can reveal controlling 
behaviors and signals in complex systems
Ø Large multidimensional datasets
Ø Signals from noise

Synthetic data can create virtual learning 
environment prior to field experience
Ø Testing of new engineering concepts
Ø Signature discovery

Fusion of synthetic and real data can help to 
constrain system behavior over real data 
alone
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Passive Systems

Virtual Learning

Real-time Data

Autonomous Control
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BACKUP
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Non-negative matrix/tensor factorization can also apply to 
process optimization using disparate datasets.

• Goal:
Optimal control of particle accelerator

• Numerous independent variables:
factors impacting accelerator performance

• Proof-of-concept with historical datasets
Ø Extracted/built a ROM to forecast performance 

based on a portion of dataset (e.g., green region)

Ø ROM performance forecasts have high accuracy 
out for several days before degrading
(i.e., requires dynamic training)

LANSCE Historical Data
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Example: Forecasting (then optimizing) 
performance of linear accelerator at LANL’s 
neutron scattering center (LANSCE)

LANSCE Data (blue) & Forecast (red)
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Pre-training to Recognize a Signal prior to Field

Example:  Using computational fluid dynamics simulations to pre-train an artificial neural network (ANN) 
coupled to a CH\ sensor and a meteorological tower for detection of NG leak.

Dependent variables: Leak location; NG flux
Independent variables:  wind speed/direction, temperature, conditions, terrain, time-series of CH4

at sample stations

3D CFD Simulations

ANN for dynamic signal analysis

Sauer, Travis, & Dubey (2017, LANL Copyright)

Simulations for pre-training,
with site-specific field data to refine


